Activity of different classes of neurons of the motor cortex during locomotion.

نویسندگان

  • Irina N Beloozerova
  • Mikhail G Sirota
  • Harvey A Swadlow
چکیده

This study examines the activity of different classes of neurons of the motor cortex in the rabbit during two locomotion tasks: a simple (on a flat surface) and a complex (overstepping a series of barriers) locomotion. Four classes of efferent neurons were studied: corticocortical (CC) neurons with ipsilateral projection (CCIs), those with contralateral projection (CCCs), descending corticofugal neurons of layer V (CF5s), and those of layer VI (CF6s). In addition, one class of inhibitory interneurons (SINs) was investigated. CF5 neurons and SINs were the only groups that were strongly active during locomotion. In most of these neurons a clear-cut modulation of discharge in the locomotion rhythm was observed. During simple locomotion, CF5s and SINs were preferentially active in opposite phases of the step cycle, suggesting that SINs contribute to formation of the step-related pattern of CF5s. Transition from simple to complex locomotion was associated with changes of the discharge pattern of the majority of CF5 neurons and SINs. In contrast to CF5 neurons, other classes of efferent neurons (CCI, CCC, CF6) were much less active during both simple and complex locomotion. That suggests that CC interactions, both within a hemisphere (mediated by CCIs) and between hemispheres (mediated by CCCs), as well as corticothalamic interactions via CF6 neurons are not essential for motor coordination during either simple or complex locomotion tasks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamics of alaninaminotransferase activity in subcellular fractions of different areas of brain cortex and hypothalamus in postnatal ontogenesis under protein-free feeding regime and after its withdrawal

Total and specific activities of alaninaminotransferase (Al-AT) were determined in general tissues, mitochondrial and cytosol fractions of visual, orbital, motor, limbic areas of brain cortex and hypothalamus of three-month old and one-year old rats under 10-20 days and 30 days protein deprivation and under recovery of normal food regime during the same terms. It was found out that Al-AT activi...

متن کامل

Dynamics of alaninaminotransferase activity in subcellular fractions of different areas of brain cortex and hypothalamus in postnatal ontogenesis under protein-free feeding regime and after its withdrawal

Total and specific activities of alaninaminotransferase (Al-AT) were determined in general tissues, mitochondrial and cytosol fractions of visual, orbital, motor, limbic areas of brain cortex and hypothalamus of three-month old and one-year old rats under 10-20 days and 30 days protein deprivation and under recovery of normal food regime during the same terms. It was found out that Al-AT activi...

متن کامل

Activity of motor cortex neurons during backward locomotion.

Forward walking (FW) and backward walking (BW) are two important forms of locomotion in quadrupeds. Participation of the motor cortex in the control of FW has been intensively studied, whereas cortical activity during BW has never been investigated. The aim of this study was to analyze locomotion-related activity of the motor cortex during BW and compare it with that during FW. For this purpose...

متن کامل

Signals from the ventrolateral thalamus to the motor cortex during 1 locomotion

25 The activity of the motor cortex during locomotion is profoundly modulated in the 26 rhythm of strides. The source of modulation is not known. In this study we examined the 27 activity of one of the major sources of afferent input to the motor cortex, the ventrolateral 28 thalamus (VL). Experiments were conducted in chronically implanted cats using an 29 extracellular single neuron recording...

متن کامل

Signals from the ventrolateral thalamus to the motor cortex during locomotion.

The activity of the motor cortex during locomotion is profoundly modulated in the rhythm of strides. The source of modulation is not known. In this study we examined the activity of one of the major sources of afferent input to the motor cortex, the ventrolateral thalamus (VL). Experiments were conducted in chronically implanted cats with an extracellular single-neuron recording technique. VL n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 23 3  شماره 

صفحات  -

تاریخ انتشار 2003